Bioelectrochemical Systems, Energy Production and Electrosynthesis
نویسندگان
چکیده
منابع مشابه
Bioelectrochemical Energy Conversion.
The interaction between photosynthetic microorganisms and an inert electrode material was examined. Cathodic polarization values of platinum-bearing marine algae were obtained over a wide current-density range under both illumination and dark conditions. A potential shift of 0.6 v in the cathodic direction occurred upon illumination at a current density of 4.3 mua/cm(2). Similar photo-induced r...
متن کاملHarnessing energy from marine productivity using bioelectrochemical systems.
Over the past decade, studies have shown that devices called microbial fuel cells (MFCs) can harness electricity from microbially mediated degradation of organic carbon, in both lab cultures and natural environments. Other studies have shown that MFCs can harness power from coastal and deep ocean sediments, as well as from plankton, without any fuel supplementation or microbial inoculation. The...
متن کاملPrediction of Renewable Energy Production Using Grey Systems Theory
Due to the reduction of renewable energy resources such as fossil fuels, the energy crisis is one of the most critical issues in today’s world. The application of these resources brings about many environmentalpollutionsthatleadtoglobalwarming. Therefore,variouscountrieshaveattemptedto reducepotentialdamageanduserenewableenergiesbytheintroductionandpromotionofrenewable energies as an essential ...
متن کاملEnergy Efficiency and Productivity Enhancement of Microbial Electrosynthesis of Acetate
It was hypothesized that a lack of acetogenic biomass (biocatalyst) at the cathode of a microbial electrosynthesis system, due to electron and nutrient limitations, has prevented further improvement in acetate productivity and efficiency. In order to increase the biomass at the cathode and thereby performance, a bioelectrochemical system with this acetogenic community was operated under galvano...
متن کاملAerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.
We studied the effects of aeration of Shewanella oneidensis on potentiostatic current production, hydrogen production in a microbial electrolysis cell, and electric power generation in a microbial fuel cell (MFC). The potentiostatic performance of aerated S. oneidensis was considerably enhanced to a maximum current density of 0.45 A/m(2) or 80.3 A/m(3) (mean: 0.34 A/m(2), 57.2 A/m(3)) compared ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Microbial & Biochemical Technology
سال: 2012
ISSN: 1948-5948
DOI: 10.4172/1948-5948.1000e112